distribution#
Defines an abstract definition of Distribution.
- class Distribution(*args, **kwargs)#
Bases:
Protocol[T]A Distribution presents a set of values a property can have.
Note
If no explicit way for sampling with the hypercube, the following code-snippet can probably be used: ``` exactness = 1000 vals = self.get_random_values(n * exactness) vals = np.sort(vals) return [
np.random.choice(vals[i:i+exactness ]) for i in range(0, len(vals), exactness)]
- get_random_values(n: int) list[T]#
Samples a random value due to the type of Distribution.
- Parameters:
n – The number of values.
- get_samples_from_hypercube(n: int) list[T]#
Samples n values from a hypercube.
- Parameters:
n – the number of samples.