linear_regressor#
Provides a model, which predicts next timesteps from with a linear regressor.
- class LinearRegressorConfig(name: str = 'Linear Regressor', normalize: bool = True, fit_intercept: bool = True, n_jobs: Optional[int] = None, positive: bool = False)#
Bases:
SkLearnModelConfigDefines the configuration for the LinearRegressor.
- name#
name of the model.
- Type:
str
- criterion#
the function to measure the quality of a split.
- splitter#
the strategy used to choose the split at each node.
- class LinearRegressorModel(time_series_params: TimeSeriesConfig, model_params: LinearRegressorConfig)#
Bases:
SkLearnModelDefines a model, which uses a Linear Regressor to predict the next timestamps.
Initializes the configuration for the LinearRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: LinearRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )