sk_learn_model#
Provides an arbitrary sk learn model architecture for prediction.
- class SkLearnModel(time_series_params: TimeSeriesConfig, model_params: SkLearnModelConfig)#
Bases:
ModelDefines a model that uses the scikit learn library for prediction.
- Parameters:
config – configuration for the model.
Initializes the model.
- Parameters:
time_series_params – configuration for time series tasks.
model_params – configuration for the model.
- abstract get_model(model_params: SkLearnModelConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
- class SkLearnModelConfig(name: str = 'SkLearn Model', normalize: bool = True)#
Bases:
ModelConfigDefines the configuration for the SkLearnModel.