system_model_interface#
Provides the interface for a PredictionTask.
- class SystemModelInterface(*args, **kwargs)#
Bases:
ProtocolDefines the interface for a PredictionTask.
- apply_noisifier(signal: DataFrame) DataFrame#
Applies the objects noisifier to a signal.
- Parameters:
signal – (pd.DataFrame) The signal.
- apply_sparsifier(signal: DataFrame) DataFrame#
Applies the objects sparsifier to a signal.
- Parameters:
signal – (pd.DataFrame) The signal.
- property deriv: Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]]#
Returns the deriv.
- get_clean_signal(start_values: dict[str, Any], sample_id: int, deriv_noised: bool = True) DataFrame#
Creates a clean signal.
- Parameters:
start_values – Start values for the simulation.
sample_id – The id of the sample.
deriv_noised – Whether the derivative is noised.
- property kinetic_parameters: Dict[str, KineticParameter[KineticParameterType]]#
Returns the kinetic_parameters.
- property name: str#
Returns the name.
- sample_start_values_from_hypercube(n: int) dict[str, Any]#
Creates a config dict.
- Parameters:
n – Number of samples.
- property specieses: dict[str, simba_ml.simulation.species.Species]#
Returns the specieses.