derivative_noiser#
Provides derivative noisers.
Derivative noisers are used to add noise to the derivative function of a prediction task. This way, noise can be propageted through time.
- class AdditiveDerivNoiser(distribution: Distribution[float])#
Bases:
objectThe AdditiveDerivNoiser is a noiser, that adds random-values to the derivative.
- distribution#
A distribution to generate random noise.
Inits AdditiveDerivNoiser with the provided params.
- Parameters:
distribution – A distribution to generate random noise from.
- noisify(deriv: Callable[[float, list[float], dict[str, float]], tuple[float, ...]], max_t: float) Callable[[float, list[float], dict[str, float]], tuple[float, ...]]#
Applies noise to the provided derivative function.
- Parameters:
deriv – Derivative function.
max_t – Adds noise up to this timestep.
- Returns:
Noised derivative function.
- class DerivNoiser(*args, **kwargs)#
Bases:
Protocol[KineticParameterType]A DerivNoiser is a Noiser, that noises a derivative function.
- abstract noisify(deriv: Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]], max_t: float) Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]]#
Noises the derivative.
- Parameters:
deriv – The derivative function, that needs to be noised.
max_t – Adds noise up to this timestep.
- class MultiDerivNoiser(noisers: list[simba_ml.simulation.derivative_noiser.derivative_noiser.DerivNoiser[KineticParameterType]])#
Bases:
objectApplies one randomly selected DerivNoiser to noise a derivative function.
- noisers#
A list of derivative_noiser.DerivNoiser to choose from.
Inits MultiDerivNoiser with the provided arguments.
- Parameters:
noisers – A list of derivative_noiser.DerivNoiser to choose from.
- noisify(deriv: Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]], max_t: float) Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]]#
Applies noise to the provided derivative function.
- Parameters:
deriv – Derivative function.
max_t – Adds noise up to this timestep.
- Returns:
Noised derivative function.
- class MultiplicativeDerivNoiser(distribution: Distribution[float])#
Bases:
objectMultiplies each element individually with a randomly generated number.
The number is generated using a selected InitialCondition.
- distribution#
A distribution to generate random noise.
Inits MultiplicativeDerivNoiser with the provided params.
- Parameters:
distribution – A distribution to generate random noise from.
- noisify(deriv: Callable[[float, list[float], dict[str, float]], tuple[float, ...]], max_t: float) Callable[[float, list[float], dict[str, float]], tuple[float, ...]]#
Applies noise to the provided derivative function.
- Parameters:
deriv – Derivative function.
max_t – Adds noise up to this timestep.
- Returns:
Noised derivative function.
- class NoDerivNoiser#
Bases:
objectThe NoDerivNoiser is a dummy DerivNoiser, that applies no noise.
- noisify(deriv: Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]], _max_t: float) Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]]#
Returns the input signal.
- Parameters:
deriv – Derivative function.
- Returns:
Not noised derivative function.
- class SequentialDerivNoiser(noisers: list[simba_ml.simulation.derivative_noiser.derivative_noiser.DerivNoiser[KineticParameterType]])#
Bases:
objectThe SequentialNoiser applies multiple given DerivNoiser sequentially.
- noisers#
A list of DerivNoiser to be applied.
Inits SequentialNoiser with the provided arguments.
- Parameters:
noisers – A list of DerivNoiser to be applied.
- noisify(deriv: Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]], max_t: float) Callable[[float, list[float], dict[str, KineticParameterType]], tuple[float, ...]]#
Applies noise to the provided derivative function.
- Parameters:
deriv – Derivative function.
max_t – Adds noise up to this timestep.
- Returns:
Noised derivative function.
Provides the AdditiveDerivNoiser. |
|
Defines multiple classes for applying noise to a derivative. |
|
Provides the MultiDerivNoiser. |
|
|
Provides the MultiplicativeDerivNoiser. |
Provides the NoDerivNoiser. |
|
|
Provides the SequentialDerivNoiser. |