random_forest_regressor#
Provides a model, which predicts next timesteps with a random forest regressor.
- class Criterion(value)#
Bases:
EnumThe function to measure the quality of a split.
- absolute_error = 'absolute_error'#
mean absolute error for the mean absolute error, which minimizes the L1 loss using the median of each terminal node.
- friedman_mse = 'friedman_mse'#
Mean squared error with Friedman’s improvement score, which uses mean squared error with Friedman’s improvement score for potential splits.
- poisson = 'poisson'#
reduction in Poisson deviance.
- squared_error = 'squared_error'#
Mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node.
- class RandomForestRegressorConfig(name: str = 'Random Forest Regressor', normalize: bool = True, criterion: Criterion = Criterion.squared_error, n_estimators: int = 100, max_depth: Optional[int] = None, min_samples_split: int = 2, min_samples_leaf: int = 1, min_weight_fraction_leaf: float = 0.0)#
Bases:
SkLearnModelConfigDefines the configuration for the RandomForestRegressor.
- name#
name of the model.
- Type:
str
- criterion#
the function to measure the quality of a split.
- splitter#
the strategy used to choose the split at each node.
- class RandomForestRegressorModel(time_series_params: TimeSeriesConfig, model_params: RandomForestRegressorConfig)#
Bases:
SkLearnModelDefines a model, which uses a Random Forest regressor.
Initializes the configuration for the RandomForestRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: RandomForestRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )