sk_learn#
Provides the sklearn models.
- class DecisionTreeRegressorModel(time_series_params: TimeSeriesConfig, model_params: DecisionTreeRegressorConfig)#
Bases:
SkLearnModelDefines a decisision tree regressor model for predictions.
Initializes the configuration for the DecisionTreeRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: DecisionTreeRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
- class LinearRegressorModel(time_series_params: TimeSeriesConfig, model_params: LinearRegressorConfig)#
Bases:
SkLearnModelDefines a model, which uses a Linear Regressor to predict the next timestamps.
Initializes the configuration for the LinearRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: LinearRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
- class NearestNeighborsRegressorModel(time_series_params: TimeSeriesConfig, model_params: NearestNeighborsConfig)#
Bases:
SkLearnModelDefines a model, which uses a nearest neighbors regressor.
Initializes the configuration for the DecisionTreeRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: NearestNeighborsConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
- class RandomForestRegressorModel(time_series_params: TimeSeriesConfig, model_params: RandomForestRegressorConfig)#
Bases:
SkLearnModelDefines a model, which uses a Random Forest regressor.
Initializes the configuration for the RandomForestRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: RandomForestRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
- class SVMRegressorModel(time_series_params: TimeSeriesConfig, model_params: SVMRegressorConfig)#
Bases:
SkLearnModelDefines a model, which uses a SVM regressor.
Initializes the configuration for the SVMRegressor.
- Parameters:
time_series_params – Time-series parameters that affect the training and architecture of models
model_params – configuration for the model.
- get_model(model_params: SVMRegressorConfig) BaseEstimator#
Returns the model.
- Parameters:
model_params – configuration for the model.
- Returns:
The model.
- property name: str#
Returns the models name.
- Returns:
The models name.
- predict(data: ndarray[Any, dtype[float64]]) ndarray[Any, dtype[float64]]#
Predicts the next time steps.
- Parameters:
data – 3 dimensional numpy array.
- Returns:
The predicted next time steps.
- train(train: list[numpy.ndarray[Any, numpy.dtype[numpy.float64]]]) None#
Trains the model with the train data flattened to two dimensions.
- Parameters:
train – training data.
- validate_prediction_input(data: ndarray[Any, dtype[float64]]) None#
Validates the input of the predict function.
- Parameters:
data – a single dataframe containing the input data, where the output will be predicted.
- Raises:
ValueError – if data has incorrect shape (row length does not equal )
|
Provides a decision tree regressor for prediction. |
|
Provides a model, which predicts next timesteps from with a linear regressor. |
|
Provides a nearest neighbors regressor, which predicts next timesteps. |
|
Provides a model, which predicts next timesteps with a random forest regressor. |
|
Provides an arbitrary sk learn model architecture for prediction. |
|
Provides a support vector machine regressor, which predicts next timesteps with. |